5TH SBSE INTERNATIONAL MEETING

23 & 24 SEPTEMBRE 2019 - NOVOTEL PARIS-SUD

TD and GC × GC – HRTOFMS/FID for the identification of odorous compounds in complex polymer matrices

Catherine Brasseur

SBSE

echnical Meeting

Copyright ©2019 CERTECH

R&D Partner for Industries

Services

Analytical support Problem solving Out of Spec analysis Regulatory assessment

Industrial projects

Product/process development Product/process improvement

Collaborative projects

Competence development Product development Process development

Activities

3

ENVIRONMENT Air quality I Health & safety I Energy | Circular Economy

MATERIALS TECHNOLOGY

(Bio-based) polymers & composites Emissions and odours from materials Lightweight materials Mechanical Recycling

CHEMISTRY AND INDUSTRIAL PROCESSES

Intensified / continuous processes Micro/Meso fluidic technologies Catalysis and synthesis Chemical Recycling

ANALYTICAL AND TECHNOLOGICAL SERVICES

Extended characterization platform / reverse engineering Pilot equipment Products and processes improvement

700 industrial contracts per year40 employeesSince 2000, Certech has collaborated with 1400 companies

Copyright ©2019 Certech

(Bio-based) polymers & composites

- Thermoplastic compounding
- Compatibilisation/dispersion
- Biocomposite and biobased formulations
- Lightweight materials
- Thermoset formulation
- High performance polymers for 3D printing
- Regulatory compliant materials

Emissions and odours from materials

- Objective measurements and diagnostic
- Odour-chemistry correlation
- Remediation
- Validation of materials and devices for indoor air purification

Barrier materials

- Selective controlled permeability
- Technical membranes
- Functional coatings

Mechanical Recycling (P to P)

- Thermoplastic compounding/processing
- Shredded composites valorisation
- Characterisation / technical data sheet
- Odour management of recyclates

 Consumer awareness has increased : More stringent demands regarding quality life, e.g. comfort, safety
 Information by public authorities, consumer organisations and health professionals
 Press coverage

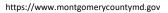
- Impact of environmental issues : Compliance with legal requirements
- Compliance with customer requirements (pressure from end-users)
 Labels and producers awareness

Marketing issues (odourless and low VOC grades)

http://www.air-tek.net

100% Non - VOC

certech


ntre de ressources technologiques en cl

https://www.montgomerycountymd.gov

https://school.discoveryeducation.com

Emissions and Odours from Materials

- Expertise in odour and air sampling for more than 35 years
- Recognized expert (CEN, ISO and Afnor normalisation committees)
- Knowledge of various applications such as:
 - Food packaging (off-flavour problem solving)
 - Cosmetic packaging
 - Consumer products
 - Transport
 - Building products
 - Indoor air quality

• Automotive OEM and ISO 17025 accreditation

Key expertise: Odour Analysis

4 components of odour:

Detectability which corresponds to the detection threshold, odour quantification by dynamic olfactometer according to EN 13725

Intensity, quantification based on a scale

Quality, decomposition into fundamental notes,

"champ des odeurs[®]" approach

Hedonic tone (acceptability), subjective and global (annoyance, approach – pleasantness/unpleasantness)

I. Quantitative analyses of odour by Dynamic dilution olfactometry

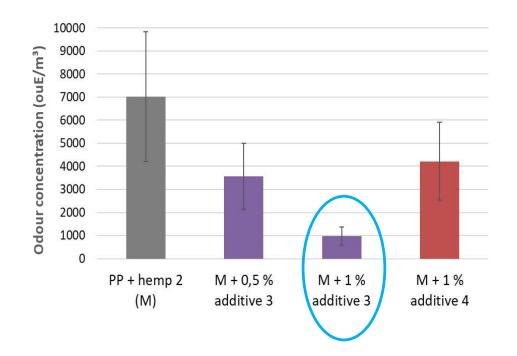
- Standardized method (EN 13725) for the measurement of odour intensity based on « dynamic olfactometry at detection threshold »

- Calibration of the detector (human noses) which has to be representative of the whole population

- Definition of a universal unit for odour intensity « uo_E/m³ »
- ⁻ Very high quality criteria (repeatability, reproducibility ...)

Basic principles of measurement :

The scale (and units) is determined by the physiological response provided by a reference material : n-Butanol



Accredited method according to ISO 17025

I. Quantitative analyses of odour by Dynamic dilution olfactometry

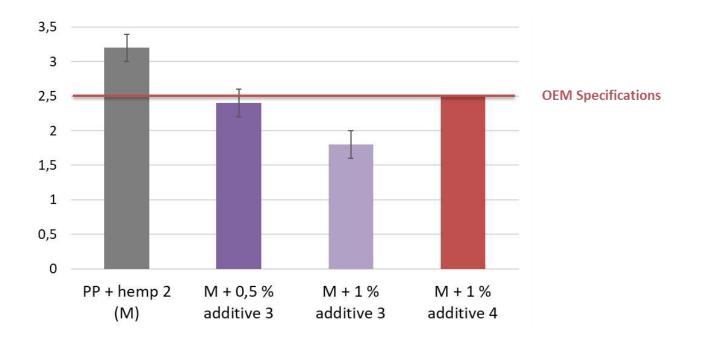
Exemple: Comparison of odour remediation additives effect on biocomposite

→ A difference between olfactometric results is considered as significant when at least a factor 2 is observed between 2 evaluations

II. <u>Quantitative and Qualitative analyses of odour by evaluation using</u> **intensity scale** and descriptors according to the **« champ des odeurs »** <u>with expert panels</u>

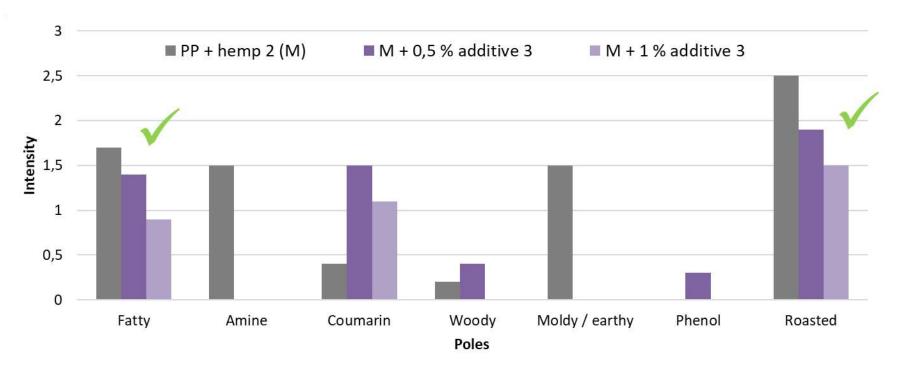
- Direct evaluation of the odour under different temperature conditions (static)
- Odour quantification by rating on intensity scale
- Odour description according to a recognized methodology
- Trained panels are performing the tests
- Recording of performances and training of the panels
- References are used (n-Butanol at different concentrations)

Accredited by french OEM (ISO12219-7 and ISO5496)


certech

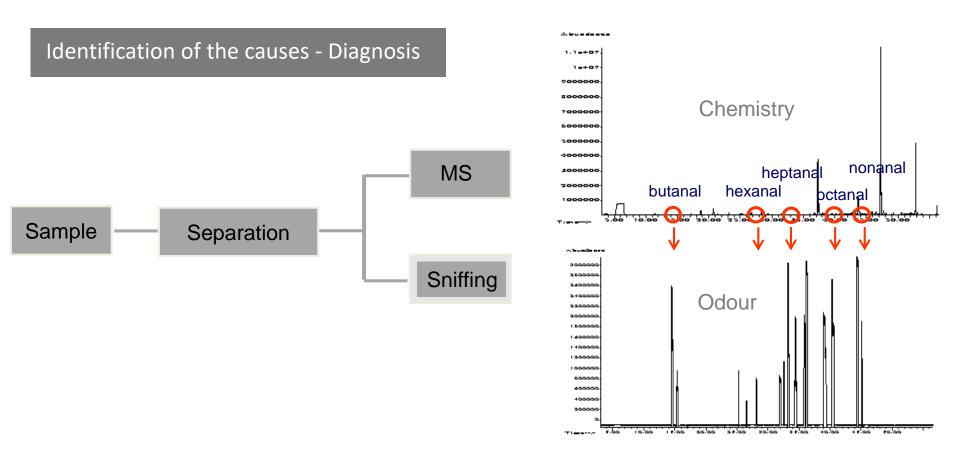
II. Quantitative analyse of odour by intensity scale

Exemple: Comparison of odour remediation additives effect on biocomposite

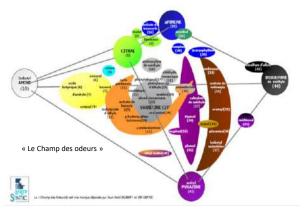


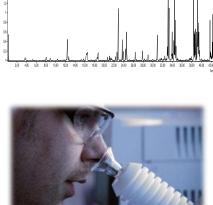
→ The biocomposite + additive 3 (1%) is a candidate to meet OEM specifications in terms of odour intensity

II. Qualitative analyses of odour by the « champ des odeurs » methodology


Exemple: Comparison of odour remediation additives effect on biocomposite

→ The additive 3 decreases the fatty and roasted notes (confirmed with 2 experiments)


III. Correlation chemistry/odour by TD-GC-MS/Olfactometry (« sniffing »)



III. Correlation chemistry/odour by TD-GC-MS/Olfactometry (« sniffing »)

- Trained sensorial expert
- Descriptors + Intensity scale
- Continuous on-line analysis (45 min)
- Sensory room with purified

air

Global odour assessment and decomposition

T.R. (min.)	Nº CAS	Analyle	Standard	Cone. (ug/m*)	Références "Champ des Odeurs"	Everation	Intensite
6,33	75-50-8	Trimethylamine	NA		Trimethylamine	note aminée, poisson	2.5
7,81	123,38,6	Propanal	NA		cis-3-Hesenal	note verte, herbe coupee	1,5
12,15	123-72-8	Butanal	Nonanal	4	Acide butyrique	note rance	2
12,41	431-03-8	2,3-Butanedione	MBC	50	Diacetyl	note grasse, beurrrée	1,5
15,71	590-85-3	Butanal, 3-methyl-	Nonanal	5	05-3-Hexenal	note verte, herbe coupée	3
16,32	4170-30-3	2-Butenal	Nonanal	24	Isobutyrate d'ethyle	note fruitée, ananas	3
16.54	64-19-7	Acetic acid	Toluene	14	Acide acétique	note piquante	2
18,52	110-52-3	Pertanal	Nonanal	7	cis-3-Hexenal	note verte, herbe coupée	3
18,73	600-14-6	2.3-Pentanedione	MBK	20	Ethyl maitol	note douce, caramel	2,5
21,05	513-85-0	Aceteir	MBK	7	Pherol	note phénolée, encre	15
22,32	1576-87-0	2-Pentenal, IEI-	Nonanal	8	cis-3-Hexenal	note verte, herbe coupée	2
23,71	66-25-1	Rexanal	Nonanal	31	cis-3-Hexenal	note verte, herbe coupée	3
25,19	98-01-1	Furfural	Toluene	47	Acide butirique	note rance.	2
26.89		Non identifië	Toluene	47	Acétate de benzvie	note solvant, geinture	15
27.58		Non identifie	โตโมครค	47	cis-3-Hearcal	note verte, herbe coupée	1
27,35	58-00-0+110- 43-0	2-Furanmethanol+2- Heptanone	Toluene	11	2-Acetyl pyrazine + solvant	note grillèe, cacetuètes + note solvant	2,5
28.29	111-71-7	Heptanal	Nonanal	1	Umonène	note fraiche, agrumes	3
29.23	5510-89-4	Pyracine, 2,3-dimethyl-	Toluene	47	2-Acetyl pyrazine	note prilée, cacahuètes	25
29,71	109-52-4	Pentangic acid	Toluene	47	Acide butyrique	note rance	15
31.48	377745-3	Furan, 2-pertyl-	Toluene	47	Limonène	note fraiche, agrumes	15
31.71	0.000	Alcane non identifié	r-Octane	3	1-Octen-3-ol	note fraiche, champignons	25
32.46		Alcane non identifié	#-Octane	6	solvant	note selvant	2
32,77	124-13-0	Octanal	Nonanai	5	Umonéne	note fraiche, agruries	3
34,61	112-40-3 + 108- 95-2	Dodecane + Phenol	Toluene	35	Pteroi	note phénolée, encre	25
35,13	100-51-6	Benzyl alcohol	Toluene	4.7	Nonatal	note verte, concombre	3
35,61	98-86-2	Acetophenose	Toluene	47	Ethyl maitol	note douce, caramel	2
36,11		Non détecté			2-Acetyl pyrazine	note grillée, cacahuêtes	2
37,14		Alcane non identifié	n-Undecare	<1,7	solvant	note solvant	3
37,35	18829-55-6	2-Norenal, {E}-	Noranal	<1,7	Noranal	note verte, concombre	3
39,69		Non identifié	Toluene	<1,7	Underanal	note verte, coriandre	2
40,65		Non identifié	Takiene	4,7	Eugenol	note épicée, clau de girofie	2,5
41,20		Non identifié	Toluene	<4,7	b-Caryophyllene	note épicée, cèdre	2,5
42,74		Alcane non identifié	n Pentadecase	9	boisé	note bolsée	2,5
42.91		Alcané non identifié	n-Pentadecate	<1,7	boise	note boisée	2,5

IV. New instrumentation at Certech

Minor compounds could be responsible of odour !

Sensitivity of human nose > Sensitivity of detector

=> Increase detector sensitivity (TOFMS) and VOC sampling combined with sniffing

→ New VOC multisampler-TD-GC-TOFMS/Olfactometry (installation ongoing T4 2019)

IV. New instrumentation at Certech

Minor compounds could be responsible of odour !

Complex VOC profile, co-elutions with matrix, unknown degradation products

=> Increase chromatographic separation, sensitivity and specificity, identification of compounds using High Resolution Mass Spectrometry

→ New VOC Multisampler-TD-GC×GC-HRTOFMS/FID

Characterization of odours and VOCs

Characterization of complex polymer samples:

- Biobased/Biocomposite materials
- Recycled plastics

Copyright ©2019 Certech

0.91

10 12 14

80

5.98

16

18

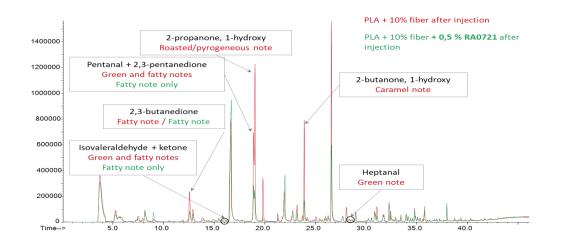
TD-GC-MS/Olfactometry analysis

TD-GC-MS/O analysis of odorous material

→ОК

 $\rightarrow OK$

TD-GC-MS/O analysis of biocomposite PLA-cellulose


3

20

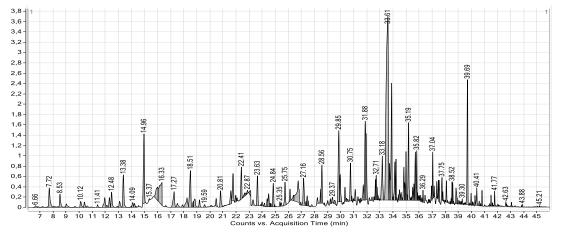
Counts

7.14

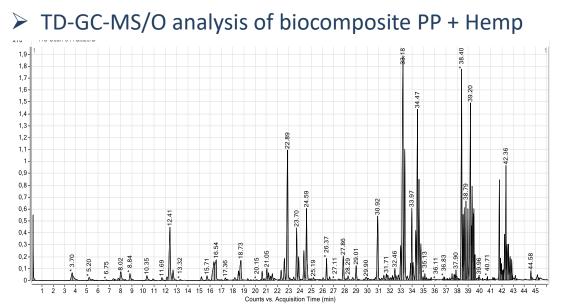
22 24 26 28 vs. Acquisition Time (min)

1 0,8 0,6

0,2


0

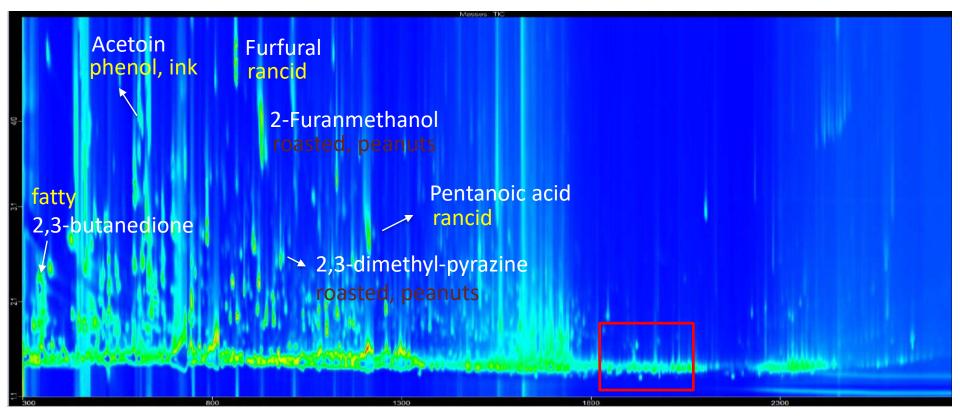
TD-GC-MS/Olfactometry analysis


 \checkmark

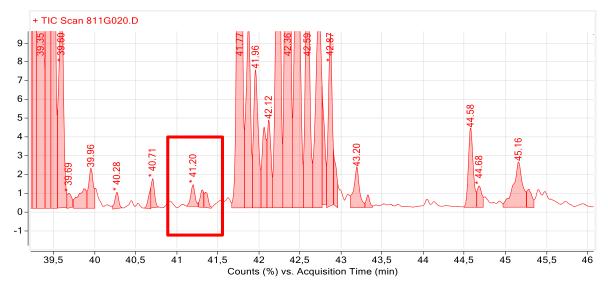
TD-GC-MS/O analysis of recycled plastic

 Information of odorous compounds and characteristics VOCs

Use of internal database

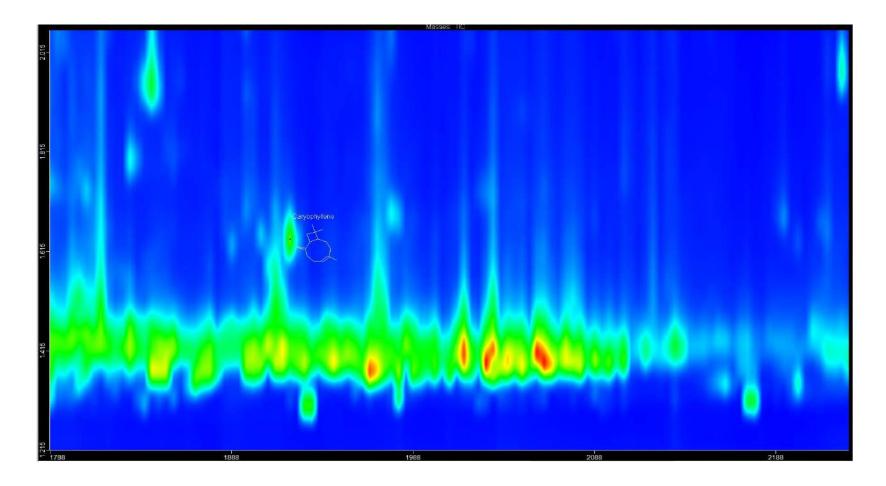

× Interesting information might be missing

TD-GC × GC-HRTOFMS/FID analysis


TD-GC×GC-HRTOFMS/FID analysis of biocomposite PP + Hemp

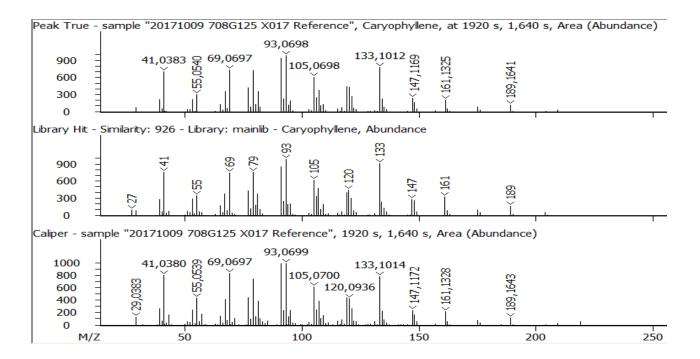
TD-GC-MS/O analysis of biocomposite PP + Hemp

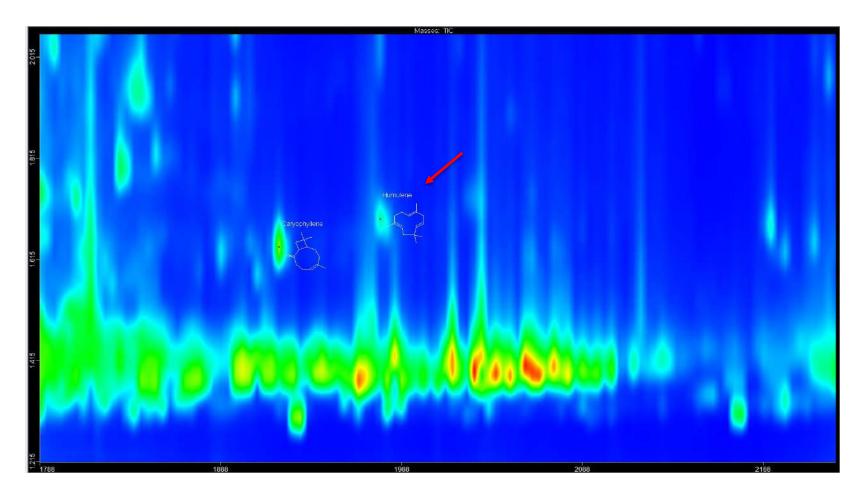
37,14		Alcane non identifié	n-Undecane	<1,7	solvant	note solvant	3
37,35	18829-56-6	2-Nonenal, (E)-	Nonanal	<1,7	Nonanal	note verte, concombre	3
39,69		Non identifié	Toluene	<1,7	Undecanal	note verte, coriandre	2
40.69		Non identifié	Toluene	<1.7	Eugenol	note épicée, clou de girofle	2,5
41,20		Non identifié	Toluene	<1,7	b-Caryophyllene	note épicée, cèdre	2,5
42,74		Alcane non identifié	n-Pentadecane	9	boisé	note boisée	2,5
42,91		Alcane non identifié	n-Pentadecane	<1,7	boisé	note boisée	2,5


TD-GC-MS/O analysis of biocomposite PP + Hemp

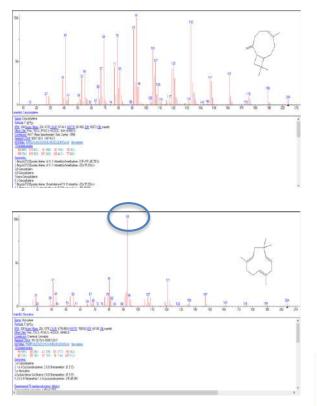
	152	41,2 Hexadecane,	1-chloro-	66,43	788141
	Best ⊽⊅	Name 🛛 🖓 🕂	Formula 🖓 🕫	Score⊽⊽≠	RT⊽≠
	•	Hexadecane, 1-chloro-	C16H33CI	66,43	41,2
È.	C	Octadecane, 1-chloro-	C18H37CI	65,75	41,2
-	C	1-Octadecanesulphonyl chloride	C18H37CI	65,32	41.2
	C	Octadecane, 1-chloro-	C18H37CI	65,28	41.2
	C	Hexadecane, 1-chloro-	C16H33CI	65,27	41,2
	C	Carbonic acid, eicosyl vinyl ester	C23H44O3	64.16	41.2
	C	Tetradecane, 1-chloro-	x10 ² Cpd 152 H	exadecase, 1-chloro-: + Scan (r 57.2 71.2	133.1
	C	Nonadecane, 1-chloro-	(0.8	43.2 85.2	
	C	2-IsopropyI-5-methyI-1-heptanol	0,4-	3.2	111.2
	C	Carbonic acid, tridecyl vinyl ester	C -0.2-	I Ulu salle salle dulle tai	المتعالليس مطالبه مدارا
			0.0		

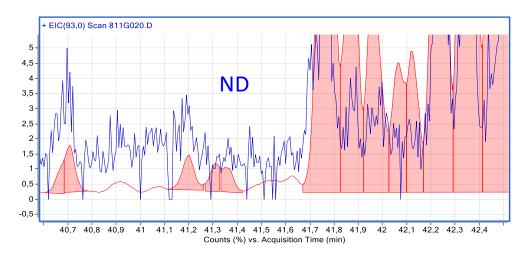
Weak Library Match Score No identification



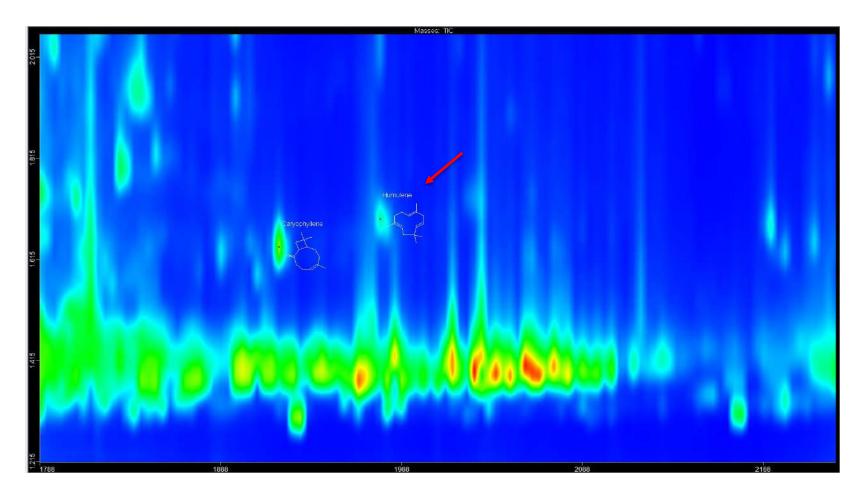


 \rightarrow Identification of β-caryophyllene (spicy, woody odour) (good match score library, chromatographic separation)

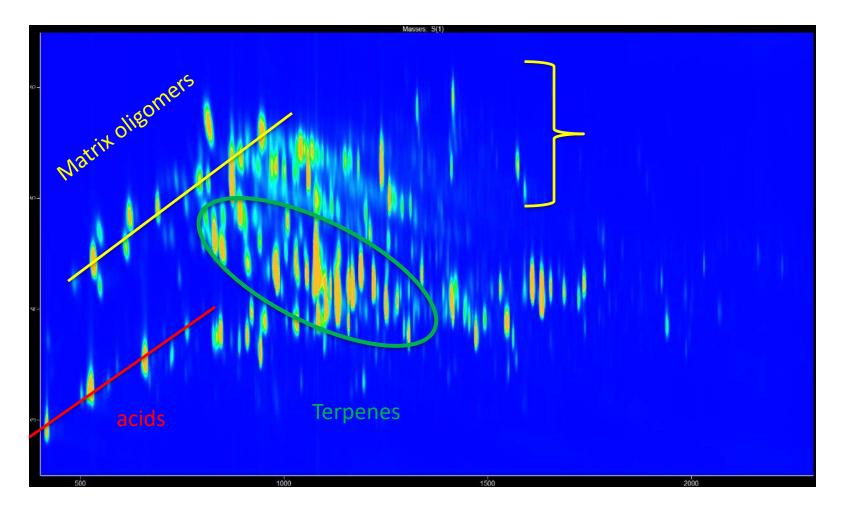


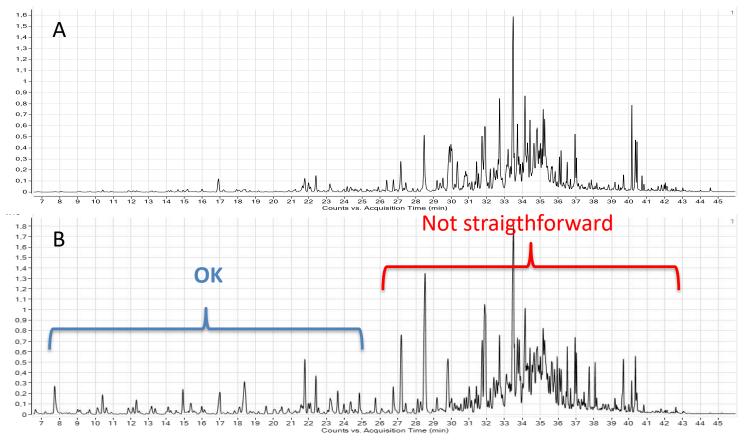


TD-GC-MS/O analysis of biocomposite PP + Hemp



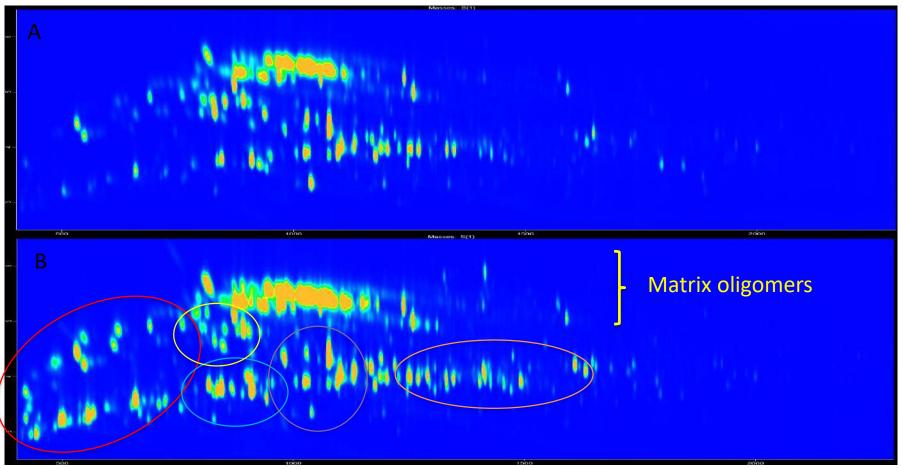
Looking for ion at m/z 93 specific to humulene (α -caryophyllene, woody odour) \rightarrow Not detected


37,14		Alcane non identifié	n-Undecane	<1,7	solvant	note solvant	3
37,35	18829-56-6	2-Nonenal, (E)-	Nonanal	<1,7	Nonanal	note verte, concombre	3
39,69		Non identifié	Toluene	<1,7	Undecanal	note verte, coriandre	2
40,69		Non identifié	Toluene	<1,7	Eugenol	note épicée, clou de girofle	2,5
41,20		Non identifié	Toluene	<1,7	b-Caryophyllene	note épicée, cèdre	2,5
42,74		Alcane non identifié	n-Pentadecane	9	boisé	note boisée	2,5
42,74 42,91		Alcane non identifié	n-Pentadecane	<1,7	boisé	note boisée	2,5



> TD-GC×GC-HRTOFMS/FID analysis of recycled plastic

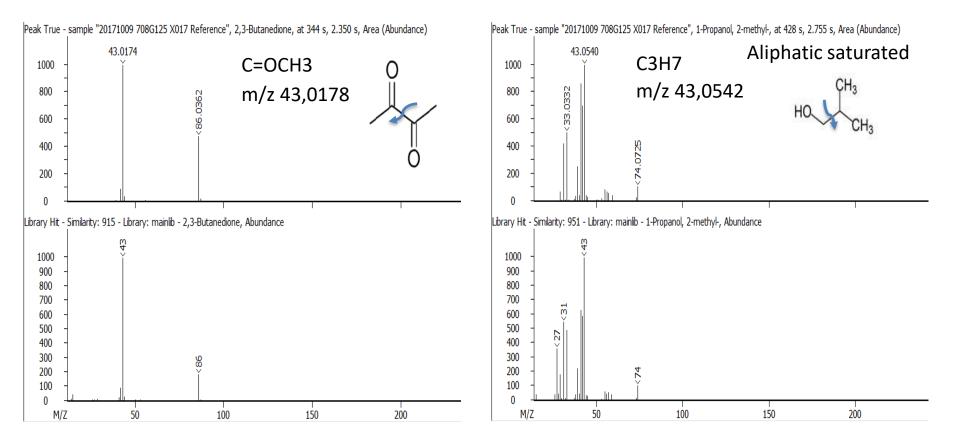
> TD-GC-MS/O analysis: comparaison of complex samples


 ✓ Comparison of odorous compounds and characteristic VOCs

× Important information might be missing

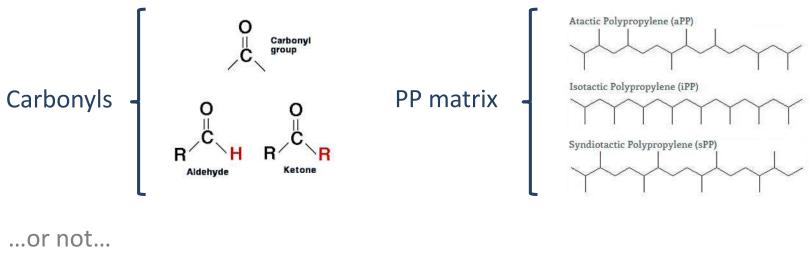
TD-GC × GC-HRTOFMS/FID analysis

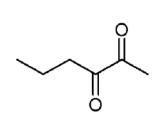
> TD-GC×GC-HRTOFMS/FID: comparaison of complex samples:

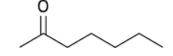


ightarrow Exhaustive VOC characterization

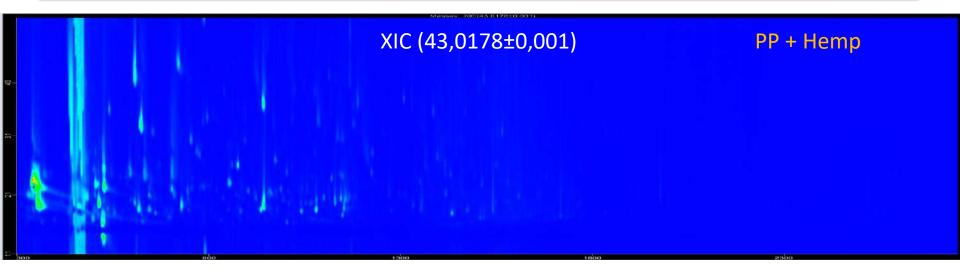
✓ Full evaluation of increase vs decrease

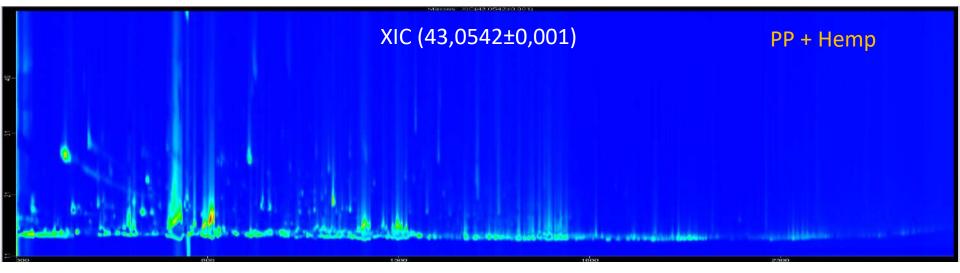



✓ TD-GC×GC-<u>HRTOFMS</u>/FID (R >25,000 FWHM, MA <1ppm)

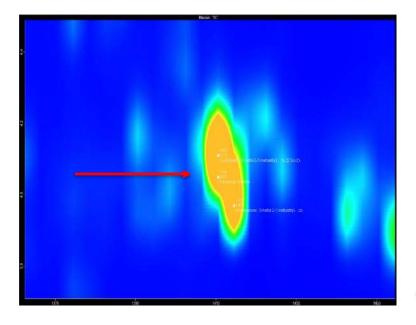


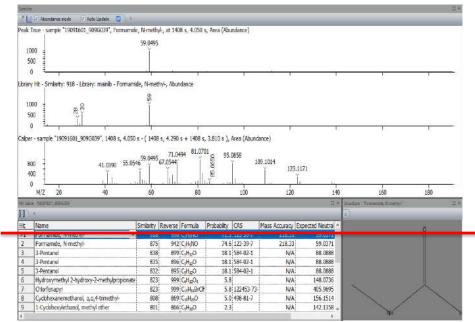
Discriminate carbonyl compounds from aliphatic saturated hydrocarbons





TD-GC × GC-HRTOFMS/FID analysis



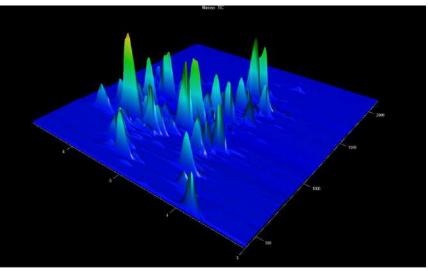

TD-GC × GC-HRTOFMS/FID analysis

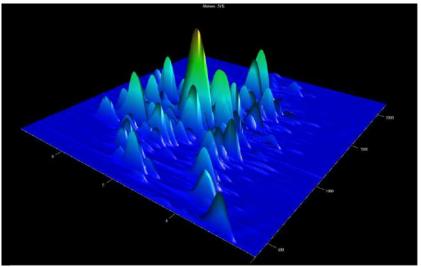
✓ GC×GC-HRTOFMS (R >25,000 FWHM, MA <1ppm)

Deconvolution process found :

- N-methyl-formamide

\rightarrow Good library Match score


ightarrow Easily excluded according to mass accuracy


✓ GC×GC-HRTOFMS/<u>FID</u> (dual detection)

- Extended linear dynamic range (10⁷)
- Response factor

MS chromatogram

FID chromatogram (log scale)

- TD-GC×GC-HRTOFMS is a powerful tool for characterization of Odour and VOC emissions complementary to TD-GC-MS/Olfactometry
 - Complex VOC profiles emitted from biobased, biocomposite materials, recycled plastics
 - Correlation of Odour/VOC is not straightforward
 - Determination of specific VOC decrease
 - Undesirable compounds can be produced during the process
- Advanced characterization for selection of suitable additives for reduction of global odour, specific odour, TVOC or specific VOC emissions
- Interest for Formulation and Process development
- Evaluation of remediation after multi-stage process

Thank you!

www.certech.be - www.emra.eu

LE FONDS EUROPÉEN DE DÉVELOPPEMENT RÉGIONAL ET LA WALLONIE INVESTISSENT DANS VOTRE AVENIR